Sec. 1.4- Surface Areas of Right Pyramids \& Right Cones

Remember: The Pythagorean Theorem

The Pythagorean Theorem states that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

We write: $a^{2}+b^{2}=c^{2}$

- To determine the length of the hypotenuse when
 we know the lengths of the legs, substitute for a and b in the equation $a^{2}+b^{2}=c^{2}$.
Substitute: $a=3$ and $b=5$

$$
\begin{array}{rlr}
3^{2}+5^{2} & =c^{2} & \\
9+25 & =c^{2} & \\
34 & =c^{2} & \\
c & =\sqrt{34} & \text { Use a calculator. } \\
c & =5.8309 \ldots &
\end{array}
$$

The length of the hypotenuse to the nearest tenth of a centimetre is 5.8 cm .

- To determine the length of a leg when we know the lengths of the other leg and the hypotenuse, substitute for a and c in the equation $a^{2}+b^{2}=c^{2}$.
Substitute: $a=1$ and $c=2$

$$
\begin{aligned}
1^{2}+b^{2} & =2^{2} & & \\
1+b^{2} & =4 & & \text { Solve for } b . \\
b^{2} & =4-1 & & \\
b^{2} & =3 & & \\
b & =\sqrt{3} & & \text { Use a calculator. } \\
b & =1.7320 \ldots & &
\end{aligned}
$$

The length of the leg to the nearest tenth of a centimetre is 1.7 cm .

Check Your Understanding

1. Determine the unknown length in each right triangle to the nearest tenth of a metre.
a)

b)

d)

2. Calculate the surface area of this regular tetrahedron to the nearest square metre.

3. A right rectangular pyramid has base dimensions 4 m by 6 m , and a height of 8 m . Calculate the surface area of the pyramid to the nearest square metre.

4. A right cone has a base radius of 4 m and a height of 10 m . Calculate the surface area of this cone to the nearest square metre

5. A model of the Great Pyramid of Giza is constructed for a museum display. The surface area of the triangular faces is 3000 square inches. The side length of the base is 50 in . Determine the height of the model to a fraction of an inch.

