Sec. 4.2 - Estimating Roots

Square Roots

When a number x can be written as the product of two equal factors, then the square root of x, represented by \sqrt{x}, is one of these factors.
For example, $\sqrt{64}=8$ because $8^{2}=64$.
The square root of a perfect square is always a rational number.

Cube Roots

The cube root of a number x, represented by $\sqrt[3]{x}$, is one of three equal factors of the number.
For example, $\sqrt[3]{64}=4$ because $4^{3}=64$.
The cube root of a perfect cube is always a rational number.

You can use groupings of prime factors to calculate square roots of perfect squares and cube roots of perfect cubes.

$$
\begin{aligned}
\sqrt{256}= & \sqrt{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2} & \sqrt[3]{125}= & \sqrt[3]{5 \cdot 5 \cdot 5} \\
& =\sqrt{(2 \cdot 2 \cdot 2 \cdot 2) \cdot(2 \cdot 2 \cdot 2 \cdot 2)} & & =\sqrt[3]{5^{3}} \\
& =\sqrt{(2 \cdot 2 \cdot 2 \cdot 2)^{2}} & & =5 \\
& =2 \cdot 2 \cdot 2 \cdot 2 & & \\
& =16 & &
\end{aligned}
$$

1. Tell whether each number is rational or irrational. Explain how you know.
a) $\sqrt{\frac{49}{16}}$
b) $\sqrt[3]{-30}$
c) 1.21
2. Use a number line to order these numbers from least to greatest.
$\sqrt{2}$, $\sqrt[3]{-2}, \quad \sqrt[3]{6}$, $\sqrt{11}$, $\sqrt[4]{30}$
