Sec. 4.6 - Applying the Exponent Laws

Exponent Laws

Product of powers law

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

When the bases of the powers are the same, add the exponents.
$2^{3} \cdot 2^{4}=2^{3+4}$

$$
=2^{7}
$$

Quotient of powers law
$\frac{a^{m}}{a^{n}}=a^{m-n}$

When the bases of the powers are the same, subtract the exponents.
$\frac{3^{9}}{3^{5}}=3^{9-5}$
$=3^{4}$

Power of a power law
$\left(a^{m}\right)^{n}=a^{m n}$
Multiply the exponents.
$\left(4^{2}\right)^{5}=4^{2.5}$

$$
=4^{10}
$$

1. Simplify by writing as a single power. Explain your reasoning.
a) $0.8^{2} \cdot 0.8^{-7}$
b) $\left[\left(-\frac{4}{5}\right)^{2}\right]^{-3} \div\left[\left(-\frac{4}{5}\right)^{4}\right]^{-5}$
C) $\frac{\left(1.5^{-3}\right)^{-5}}{1.5^{5}}$
d) $\quad \frac{9^{\frac{5}{4}} \cdot 9^{-\frac{1}{4}}}{9^{\frac{3}{4}}}$
2. Simplify. Explain your reasoning.
a) $\quad m^{4} n^{-2} \cdot m^{2} n^{3}$
b) $\quad \frac{6 x^{4} y^{-3}}{14 x y^{2}}$
3. Simplify. Explain your reasoning.
a)

$$
\left(25 a^{4} b^{2}\right)^{\frac{3}{2}}
$$

b) $\quad\left(x^{3} y^{-\frac{3}{2}}\right)\left(x^{-1} y^{\frac{1}{2}}\right)$
c) $\frac{12 x^{-5} y^{\frac{5}{2}}}{3 x^{\frac{1}{2}} y^{\frac{-1}{2}}}$
d) $\quad\left(\frac{50 x^{2} y^{4}}{2 x^{4} y^{7}}\right)^{\frac{1}{2}}$
4. A cone with height and radius equal has volume $18 \mathrm{~cm}^{3}$. What are the radius and height of the cone to the nearest tenth of a centimetre?

