Sec. 4.6 – Applying the Exponent Laws

Exponent Laws

Product of powers law

 $a^m \cdot a^n = a^{m+n}$

When the bases of the powers are the same, add the exponents.

 $2^3 \cdot 2^4 = 2^{3+4}$

Quotient of powers law

$$\frac{a^m}{a^n} = a^{m-n}$$

When the bases of the powers are the same, subtract the exponents.

$$\frac{3^9}{3^5} = 3^{9-5}$$

= 3⁴

Power of a power law

 $(a^m)^n = a^{mn}$

Multiply the exponents.

$$\left(4^2\right)^5 = 4^{2 \cdot 5}$$
$$= 4^{10}$$

- **1.** Simplify by writing as a single power. Explain your reasoning.
 - **a)** $0.8^2 \cdot 0.8^{-7}$

b)
$$\left[\left(-\frac{4}{5}\right)^2\right]^{-3} \div \left[\left(-\frac{4}{5}\right)^4\right]^{-5}$$

c)
$$\frac{\left(1.5^{-3}\right)^{-5}}{1.5^{5}}$$

d)
$$\frac{9^{\frac{5}{4}} \cdot 9^{\frac{1}{4}}}{9^{\frac{3}{4}}}$$

2. Simplify. Explain your reasoning.

$$m^4 n^{-2} \cdot m^2 n^3$$

b)
$$\frac{6x^4y^{-3}}{14xy^2}$$

3. Simplify. Explain your reasoning.

a) $(25a^4b^2)^{\frac{3}{2}}$

b)
$$\left(x^3 y^{-\frac{3}{2}}\right) \left(x^{-1} y^{\frac{1}{2}}\right)$$

 $\left(\frac{50x^2y^4}{2x^4y^7}\right)^{\frac{1}{2}}$ d)

4. A cone with height and radius equal has volume 18 cm³. What are the radius and height of the cone to the nearest tenth of a centimetre?